Phosphorus Reduction Through Precision Animal Feeding

Paul E. Cerosaletti
Cornell Cooperative Extension of Delaware County

Dr. D. G. Fox

Dr. L. E. Chase
Cornell University
Phosphorus Reduction Through Precision Feed Management

Paul E. Cerosaletti
Cornell Cooperative Extension of Delaware County

Dr. D. G. Fox
Dr. L. E. Chase
Cornell University
Phosphorus in the Cannonsville: What is Delaware County Doing About it?
The Delaware County Action Plan for Phosphorus Reduction (DCAP)
DCAP Origins

- Regs - Basin is “P” restricted
- Economic growth restricted
- Variance for WWTP expansion
- Regs - Comprehensive Strategy DCAP
- BoS implement DCAP/ part of solution
 - Commitment $2 million +, $2 million + in grants
 - Local governance
DCAP Tenets

• Voluntary with incentives
• Locally administered
• Collaborative/partnerships
• Scientific base
• Supports decisions on the land
• Useful outside the NYC watershed
DCAP Goals

• Short Term
 ➢ Obtain “P” Offsets – WWTP expansions
 ➢ Implement integrated research conjunctively w/ management practices

• Long Term
 ➢ Sustain water quality mgm’t program
 ➢ Increase local capacity for decision making
 ➢ Removal from “P” restriction
 ➢ Continue “P” reduction to avoid future TMDLs or lower guidance values - $ Margin of Safety
Cannonsville Reservoir NPS Phosphorus Load

- Forest: 25%
- Urban: 3%
- Septics: 3%
- Active & Inactive Agriculture: 69%

Bishop, 2001
Whole Farm Phosphorus Mass Balance

Imported P

Farm Boundary

Exported P

Feed

Fertilizer

Bedding

Animals

P remaining on farm

Run off

Leaching

P Losses to water

Milk

Crops

Animals

Manure
Impact of Feed P imports

- 18 - 41 kg Feed P imported per cow/year
- 7000 – 8000 mature cows in Cannonsville Reservoir Basin
- = 126,000 – 328,000 kg P imported into Basin per year as feed
- 50,000 kg avg. annual P loading to the Cannonsville Reservoir
The Phosphorus Reduction Through Precision Animal Feeding Program

- Developed as part of Delaware County’s Comprehensive Strategy to address phosphorus management (Delaware County Action Plan - DCAP)
The Phosphorus Reduction Through Precision Animal Feeding Program

- One of several Ag and non Ag strategies
 - Manure composting and export
 - Urban storm water management
 - On site septic systems
 - Rural road runoff management
 - Modeling and monitoring
Simplified Phosphorus Cycle of the Dairy Farm

- Purchased Feed
- Crops
- Manure
- Soils
- Cow
- Milk
- Farm boundary

Intervene
Phosphorus Reductions Through Feed Management

Precision Feed Management

Precision Feeding <-> Comprehensive Forage Management
The Phosphorus Reduction Through Precision Animal Feeding Program

Designed to:

- Assess potential to reduce phosphorus imports and manure excretions on typical dairy farms through precision feed management

- seek to realize this potential
Precision Animal Feeding Program – Project 1

- 2 years
- 4 farms (2 monitor, 2 implement)
- work closely with farmers and feed reps
- feed industry outreach
Precision Animal Feeding Program – Project 1

- **Procedures:**
 - Gathering data 1x per month (milk production test day)
 - Feed quality analysis
 - Measuring feed intakes
 - Monitoring milk production
 - Monitoring animal and environmental parameters
Precision Animal Feeding Program – Project 1

Procedures:

- Summarizing data by milk level for the milking herd:
 - < 50 lbs/d 50-70 lbs/d 70-90 lbs/d >90 lbs/d

- Modeling diets using Cornell Net Carbohydrate and Protein System (CNCPS) for each milk level.
Precision Animal Feeding Program – Project 1

- **Procedures:**
 - Using data to design and implement P reducing feeding strategies
 - seeking to implement P reductions by manipulating the purchased feeds in the diet (not forages)
 - Analyzing manure for P content before and after implementation
Precision Animal Feeding Program - Project 1

Results –
Dietary Monitoring and Modeling
Dietary P Intakes - Actual Results

Phosphorus Intake, % of Requirement

<table>
<thead>
<tr>
<th></th>
<th><50</th>
<th>50-70</th>
<th>70-90</th>
<th>>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herd A</td>
<td>154%</td>
<td>171%</td>
<td>174%</td>
<td>161%</td>
</tr>
<tr>
<td>Herd B</td>
<td>145%</td>
<td>149%</td>
<td>140%</td>
<td>130%</td>
</tr>
<tr>
<td>Herd C</td>
<td>116%</td>
<td>108%</td>
<td>106%</td>
<td>99%</td>
</tr>
<tr>
<td>Herd D</td>
<td>133%</td>
<td>115%</td>
<td>107%</td>
<td>101%</td>
</tr>
</tbody>
</table>
Forage P levels

<table>
<thead>
<tr>
<th>DairyOne lab (NYS)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legume hay</td>
<td>.26 ±.06</td>
</tr>
<tr>
<td>Legume silage</td>
<td>.32 ±.06</td>
</tr>
<tr>
<td>Grass hay</td>
<td>.24 ±.08</td>
</tr>
<tr>
<td>Grass silage</td>
<td>.31±.07</td>
</tr>
<tr>
<td>Corn silage</td>
<td>.23±.03</td>
</tr>
</tbody>
</table>

Project 1 Forages 1999-2000

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legume and MML Hay and Silage</td>
<td>.39±.05</td>
</tr>
<tr>
<td>Grass and MMG Hay and Silage</td>
<td>.41±.09</td>
</tr>
<tr>
<td>Corn Silage</td>
<td>.27±.05</td>
</tr>
</tbody>
</table>
Precision Animal Feeding Program - Project 1

Results – Dietary Intervention
Results – Dietary Intervention

- Reduced P feed imports and predicted manure P excretions:
 - 14.5 kg per cow per year in Herd A
 • 40 g/cow/day
 - 9.1 kg per cow per year in Herd B
 • 25 g/cow/day

30%+ reduction in feed P imports
30-36% predicted reduction in manure P excretions
Results – Dietary Intervention

- Reduced Manure P Content:

 Average for Herds A&B

 Before - 1.32 % of fecal DM
 After - 0.88 % of fecal DM

 33% reduction (agrees with CNCPS model)
Dietary P Reductions
- Implications for Cannonsville

- 7000-8000 mature cows in Cannonsville basin
- Assume 9 kg per cow/yr reduction across all mature cows is achieved
Dietary P Reductions
- Implications for Cannonsville

Results in:
64,000 – 73,000 kg
less P imported per year into the basin and excreted in dairy manure produced in basin

50,000 kg avg. annual P load into Cannonsville reservoir
Implementation Strategies

- **Herd A**
 - High P content forages
 - Had no mineral P in grain to begin with!
 - High P byproducts in grain pellets
 - Wheat midds primarily
Implementation Strategies

- Herd A
 - Moved to full 2 feed system
 - High protein “meal” concentrate and corn meal
 - Still feeding wheat midds but much lower level.
 - Had to use this system to reduce wheat midds, while not increasing feed costs.
Herd A
- Farmer able to feed it
- Cows ate it
- Feed costs reduced approx. $0.20 per cow/d
 - Approx. $5,000 per year for this herd
 - Due to 2 feed system
Implementation Strategies

- Herd B
 - High forage P content
 - Meal feed with mineral P added
 - Some high P byproducts
 - Distillers, soybean oil meal
Implementation Strategies

- Herd B
 - Removed mineral P from feed only
 - Small reduction in feed costs
 - $0.02 per cow/day
 - Approx. $400/year for this herd
 - Due to pricing structure on mineral sources
Precision Feed Management:

Comprehensive Forage Management
Forage Management

- Forage Management Components
 - Forage species selection (quality, fertility, erosion)
 - Forage establishment (erosion)
 - Precision plant feeding (fertility, Precision Ag)
 - Forage harvest timing (quality)
 - Forage yield (P removal rate, feeding impacts)

List is not complete!!
Forage Species Selection: BMR Sorghum Sudangrass

- High forage quality (potential for reduction of purchased feed nutrients)
- Less soil erosion than corn
- Allows summer manure spreading (better from hydrologic sensitivity standpoint)
- Cover crop for winter
- Low P content (helps for reduced P diets)
Forage Establishment and Fertility

- No till/Min. till forage establishment (?)
- Cover Crops, interseedings (Del Co. demos)
- Reduced or no P starter fertilizer
 - Q. Ketterings, Cyzmmek statewide corn P starter plots and P solubility trials
- Precision Agriculture – fertilizer and spray applications
Forage Quality Impacts: Intensive Pasture

- Intensively managed pasture
 - Reduced grain feeding by up to 25%
 - Equals approx. 0.8 lbs less P intake and manure excretion per cow per month
 - Lower CP grain for late lactation cows
 - May be able to reduce P intake and excretion on these cows by 10%
Forage Yield: Intensive Grass Management

<table>
<thead>
<tr>
<th>Nitrogen Rate, Lbs/ac</th>
<th>P Removal, Lbs P<sub>2</sub>O<sub>5</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamden, 1999</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>125</td>
<td>82</td>
</tr>
<tr>
<td>250</td>
<td>101</td>
</tr>
<tr>
<td>375</td>
<td>89</td>
</tr>
</tbody>
</table>
Forage Management

- Many facets to consider
- Impacts on water quality complex
- Much potential
- Needed for dairy industry in Northeast
Comprehensive Nutrient Management Planning: Expanding the Horizons
CNMP Components

- Precision Feeding
- Forage Management
- Soil and Water aspects of the farm
- Manure Management
- Economic Assessment